An Assessment of the South Asian Summer Monsoon Variability for Present and Future Climatologies Using a High Resolution Regional Climate Model (RegCM4.3) under the AR5 Scenarios
نویسندگان
چکیده
We assessed the present and future climatologies of mean summer monsoon over South Asia using a high resolution regional climate model (RegCM4) with a 25 km horizontal resolution. In order to evaluate the performance of the RegCM4 for the reference period (1976–2005) and for the far future (2070–2099), climate change projections under two greenhouse gas representative concentration pathways (RCP4.5 and RCP8.5) were made, the lateral boundary conditions being provided by the geophysical fluid dynamic laboratory global model (GFDL-ESM2M). The regional climate model (RCM) improves the simulation of seasonal mean temperature and precipitation patterns compared to driving global climate model (GCM) during present-day climate conditions. The regional characteristic features of South Asian summer monsoon (SASM), like the low level jet stream and westerly flow over the northern the Arabian Sea, are well captured by the RegCM4. In spite of some discrepancies, the RegCM4 could simulate the Tibetan OPEN ACCESS Atmosphere 2015, 6 1834 anticyclone and the direction of the tropical easterly jet reasonably well at 200 hPa. The projected temperature changes in 2070–2099 relative to 1976–2005 for GFDL-ESM2M show increased warming compared to RegCM4. The projected patterns at the end of 21st century shows an increase in precipitation over the Indian Peninsula and the Western Ghats. The possibilities of excessive precipitation include increased southwesterly flow in the wet period and the effect of model bias on climate change. However, the spatial patterns of precipitation are decreased in intensity and magnitude as the monsoon approaches the foothills of the Himalayas. The RegCM4-projected dry conditions over northeastern India are possibly related to the anomalous anticyclonic circulations in both scenarios.
منابع مشابه
Evaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region
1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...
متن کاملMonsoon-induced biases of climate models over the tropical Indian Ocean
2 ABSTRACT Long-standing biases of climate models limit the skills of climate prediction and projection. Overlooked are tropical Indian Ocean (IO) errors. Based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble, the present study identifies a common error pattern in climate models that resembles the IO Dipole (IOD) mode of interannual variability in nature, with ...
متن کاملUnderstanding land surface response to changing South Asian monsoon in a warming climate
Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrea...
متن کاملCaspian Sea south coast future climate change estimations through regional climate model
. Caspian Sea south coast future climate change estimations through regional climate model many physical of the procedures related to climate change are not perceived thoroughly. Scientific knowledge used to show those procedures completely, and to analyses forecasts is so complex, since most current studies about climate physical model have been done through semi experimental and random model...
متن کاملUncertainty Investigation of Precipitation and Temperature Scenarios for the Sira Basin under Climate Change Impact
Results of assessment of the future climate change impacts is associated with some uncertainties. Considering the range of uncertainties increases reliability of the results. In this study, climate change impacts on daily precipitation, maximum and minimum temperature of Sira basin are assessed using LARS-WG model, for 2036-65 period. Accordingly, uncertainty of new emissions scenarios (RCP2.6،...
متن کامل